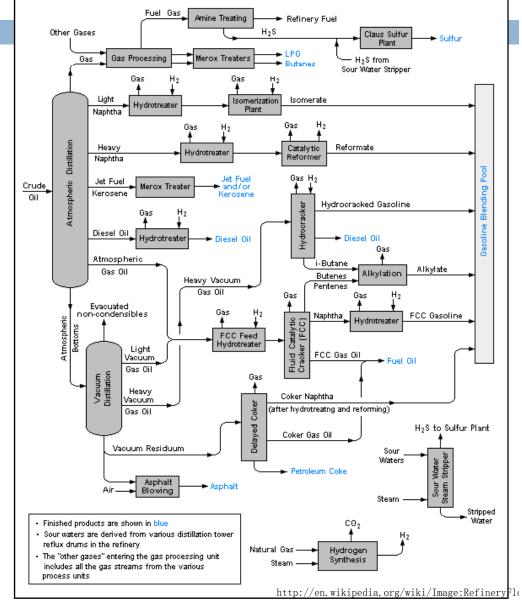
http://upload.wikimedia.org/wikipedia/commons/9/99/MiRO1.jp

MATERIALS OF CRUDE OIL REFINING: CORROSION PROBLEMS AND PREVENTION

MSE 395 Final Presentation - Gareth Hughes

Overview

Introduction to Refining and Corrosion
 Brief look at types of corrosion


- Materials Used in Refineries
 - Ferrous Alloys
 - Other Alloys
- □ Corrosive Substances
 - Low Temperature
 - High Temperature
- □ Corrosion Protection Methods
- Conclusions

Crude Oil Refining

01.

- Necessary to
 create useful
 hydrocarbon
 products
- Complicated system requiring many different pressure and temperature conditions
- Diverse environmental

1 •

Corrosion in Refineries

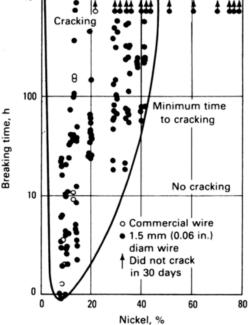
- □ Controls operation of process line
 - Must be watched to prevent accidents
 - Causes reduction in heating and cooling efficiency
 - Requires periodic inspection and maintenance, which halts the entire production line
- □ Cost of corrosion: \$3.7 billion annually
 - **1**.4 billion equipment replacements
 - **1.**8 billion maintenance expenses
 - **\$0.5** billion fouling removal

Materials Used - Conditions Found

- Materials must exhibit a number of properties
 - Resist high temperatures and pressures
 - Resist hydrocarbon impurities
 - Resist air and water intrusion cycles
 - Display warning of corrosion (no spontaneous failure)
 - Must maintain strength in fire and sudden temperature changes to stop spreading of fire if accidents occur
- Limits materials to metalsPlastics too low temperature

B.B. Morton, Metallurgical Methods for Combating Corrosion and Abrasion in the Petroleum throughout Industry, J. Inst. Petrol., Vol 34 (Nor 289), 1948, p 1-68

Materials Used - Ferrous Alloys


- □ Most common type of material used
- Standard carbon steel used to 80% of components and almost all structural applications
 - Limited corrosion resistance, mainly storage applications
- Low-alloy C-Cr-Mo steel used for applications of higher temperatures, hydrogen, and sulfide exposure
 Used for some elevated temperature applications
- Stainless steels used exclusively for high temperature sulfidic and naphthenic acid conditions
 - Considerably more expensive and slightly reduced

A. J. Freedman, G. F. TSitaira rapport of aski, Selection of Alloys for Refinery Processing Equipment, Corrosion, Vol 16 (No. 1), 1960, p 19t - 25t

Materials Used - Other

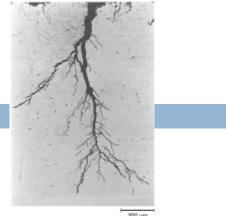
Alloys

- Used for specific applications where cheaper ferrous alloys would fail
- □ Copper
 - Used for heat exchangers
 - Increased temperature conduction, but corrosion problems with contaminated water
- D Nickel
 - Used for very high temperature corrosion resistance
 - Often alloyed with other metals to improve chloride resistance
- Titanium
 - Used for low temperature, but very corrosive sulfidic and chloridic environments

Effect of nickel alloying on 17%-24%Cr stainless steel on resistance to stress corrosion cracking in boiling 42% magnesium chloride solution

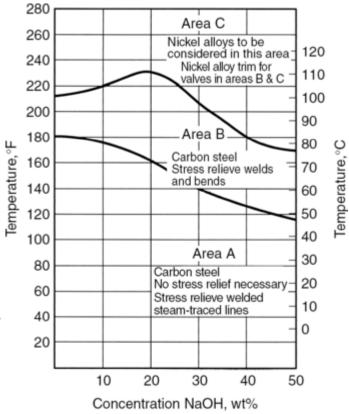
10³

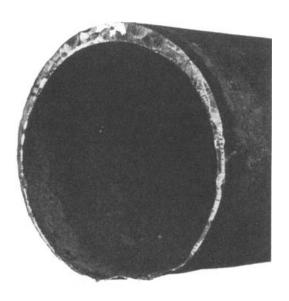
Coolers and condensers using seawater^{hloride solution}


Corrosion Problems

□ Split into two categories

- □ Low temperature (below 260°C)
 - Corrosion mostly by pitting and stress corrosion cracking
 - Always in the form of aqueous or other liquid solutions
- ∎ High temperature (above 205°C)
 - Corrosion mostly by uniform thinning, local
 - attack, and erosion-corrosion
 - Generally in the absence of water, taking the form of liquid or gase hydrocarbons




Low Temperature Corrosives

- Most widespread form of corrosion, but less severe
- □ Caused by two sources:
 - Contaminants in crude oil process stream
 - Air and water
 - Hydrogen sulfide
 - Sour water combination of water with ammonia, hydrogen cyanide, and organic sulfides
 - Chemicals introduced, such as solvents, neutralizers, and catalysts
 - Caustic soda most prevalent

High Temperature Corrosives

- □ Most dangerous form of corrosion
 - High temperatures and high pressures can cause ignition
- Primarily caused by sulfur compounds in the crude oil in concentrations of 0.1% to 5.0%
- \square Corrosion occurs when sulfides react with metal to form metal sulfides and $\rm H_2S$
- Metal corrodes faster on the heated side of furnace tubes
 - Dependent on the metal surface temperature, rather than the stream temperature

Corrosion Control Methods

□ Monitoring

- Off-line methods checks during maintenance
 Tell when equipment must be replaced
- On-line methods report corrosion as it happens

Allows control of corrosion by actively changing process variables

- □ Careful material selection
 - Model the system before construction and determine corrosive areas
- Physical material barriers
 - Application of corrosion resistant coatings or cladding
 - Layers of stainless steel
 - Walls of acid resistant concrete

R.D. Kane, D.C. Eden, and D.A. Eden, Innovative Solutions Integrate Corrosion Monitoring with Process Control, Mater. Perform., Feb 2005, p 36-41

Conclusions

- Important area of research for efficient
 production of fossil fuels
- Much is known about corrosion, but methods for control are still basic
- Refinery process complicated, so many forms of corrosion must be prevented concurrently
- In a world of limited petroleum resources, efficient production is extremely important